Structure Reports

Online
ISSN 1600-5368

Hong-Mei Han, Cheng-Rong Lu, Yong Zhang and De-Chun Zhang*
 Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dczhang@suda.edu.cn

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.118$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Acetyl-7-methoxycoumarin

In the title molecule, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$, the lactone and benzene rings are coplanar, while the plane of the acetyl substituent is rotated by $12.26(9)^{\circ}$ from the molecular plane. The molecules stack through $\pi-\pi$ interactions along [100] and these stacks are laterally connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along the other two axial directions.

Comment

Coumarins are an important class of compounds because of their applications in synthetic chemistry, medicinal chemistry and photochemistry. Some coumarins are photoreactive; they are also widely used in organic solid state chemistry (Brett et al., 2000; Vishnumurthy et al., 2001), laser dyes (Nemkovich et al., 1997; Sharma et al., 2003) , biological sensors (Sardari et al., 1999) and molecular switches (Maria \& Wang, 2000). Coumarins exhibit antiviral (Domagala et al., 1996) and antimicrobial activities (Eid et al., 1994). Suitably substituted coumarins are used as nonlinear optical materials (Lindsay et al., 1994). 3-Acetylcoumarin (Munshi et al., 2004) displays polymorphism (Bernstein et al., 1999), while many of its derivatives, such as the title compound, (I), are effective anticancer agents (Huang et al., 1996) or have been proposed as sensitizers for light-sensitive materials (Donald \& Samir, 1979). During our systematic search for functional organic materials, (I) was synthesized and its structure is reported here.

(I)

The title molecule (Fig. 1) is essentially planar. The lactone and benzene rings are inclined at only $0.34(5)^{\circ}$ to one another. The maximum deviation of the atoms in the skeleton (the lactone and benzene rings) from the molecular plane (C1-C9/O1) is only 0.0072 (11) \AA. The $\mathrm{O} 4 / \mathrm{C} 1 / \mathrm{O} 1$ and C7/O3/ C12 planes are inclined at $0.99(14)$ and $2.95(14)^{\circ}$, respectively, to the molecular plane. However, the O2/C10/C11 plane makes an angle of $12.26(9)^{\circ}$ with the molecular plane, and atoms O 2 and C 11 deviate from that plane by 0.2181 (11) and 0.2807 (11) \AA. In the crystal structure, molecules stack through $\pi-\pi$ interactions (Desiraju, 1995) (Table 3), so that

Received 27 April 2005
Accepted 3 May 2005
Online 28 May 2005

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are represented as small spheres of arbitrary radii.
the interacting molecules are tightly and almost completely overlapped (Fig. 2). These form molecular stacks along [100], which constitute the primary stabilization of the structure. The stacks are laterally connected by relatively strong $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju, 2002) (Table 2) along [010], and the hydrogen-bonding network is further extended through other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [3.441 (2) Å] along [001], forming an ordered three-dimensional network.

Experimental

The title compound was synthesized in two steps. Firstly, 3-acetyl-7hydoxycoumarin was prepared according to the method of Shan \& Shan (1954). Next, 3-acetyl-7-hydoxycoumarin (0.01 mol), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{2}(0.01 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{~g})$ were mixed and the mixture was refluxed in acetone (50 ml) for 3 h ; the undissolved solid was filtered off and the filtrate was concentrated. The product was recrystallized three times from 95% ethanol, and light-yellow crystals of (I) were obtained from a mixture of ethanol and DMF (3:1) at room temperature over a period of two weeks (m.p. 437 K). Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$: C $66.06, \mathrm{H} 4.59 \%$; found: C 66.42 , H 4.73%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 399.97 \mathrm{MHz}$, ambient temperature): $2.17(3 \mathrm{H}, s$, $\mathrm{Me}), 3.92(3 \mathrm{H}, s, \mathrm{Me}), 6.84(2 \mathrm{H}, q), 7.54(1 \mathrm{H}, \mathrm{D}), 8.51(1 \mathrm{H}, \mathrm{D})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \\
& M_{r}=218.20 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.1501(6) \AA \\
& b=8.0640(8) \AA \\
& c=9.6850(10) \AA \\
& \alpha=80.24(13) \\
& \beta=6.517(1)^{\circ} \\
& \gamma=72.896(11)^{\circ} \\
& V=498.60(9) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.453 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 1600 reflections
$\theta=3.1-25.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, light yellow
$0.61 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.936, T_{\text {max }}=0.989$
4889 measured reflections
1810 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0649 P)^{2}\right. \\
& \quad+0.0595 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.22 \mathrm{e}^{-3} \AA^{-3} .
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

O1-C9	$1.3729(16)$	$\mathrm{O} 3-\mathrm{C} 12$	$1.4348(17)$
O1-C1	$1.3911(17)$	$\mathrm{O} 4-\mathrm{C} 1$	$1.2019(17)$
O2-C10	$1.2176(18)$	$\mathrm{C} 2-\mathrm{C} 10$	$1.491(2)$
O3-C7	$1.3531(17)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.493(2)$
C7-O3-C12	$117.84(11)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	$121.32(12)$
O4-C1-O1	$115.36(12)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$123.66(13)$
O4-C1-C2	$128.03(14)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$115.61(12)$
O1-C1-C2	$116.60(12)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.73(13)$
C3-C2-C1	$119.70(13)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 2$	$118.91(13)$
C3-C2-C10	$118.98(13)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11$	$119.91(14)$
C9-O1-C1-O4	$179.41(11)$	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$-2.4(2)$
C9-O1-C1-C2	$0.32(19)$	$\mathrm{C} 12-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$177.23(13)$
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.12(14)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 10-\mathrm{O} 2$	$12.4(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.2(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10-\mathrm{O} 2$	$-167.91(14)$
O4-C1-C2-C10	$1.2(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 10-\mathrm{C} 11$	$-167.29(13)$
O1-C1-C2-C10	$-179.82(11)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10-\mathrm{C} 11$	$12.4(2)$
C10-C2-C3-C4	$179.87(11)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{2}$	0.98	2.58	$3.4406(19)$	147
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.37	$3.2726(17)$	158

Symmetry codes: (i) $-x+1,-y+3,-z+2$; (ii) $-x+2,-y+1,-z+1$.

Table 3
$\pi-\pi$ Interactions in the title crystal $\left(\AA,{ }^{\circ}\right)$.

$d_{\mathrm{p} \cdots \mathrm{p}}$	$d_{\mathrm{c} \cdots \mathrm{c}}$	ANP	Symmetry code
3.37	3.51	16.1	$2-x, 2-y, 1-z$
3.36	4.08	34.6	$1-x, 2-y, 1-z$

Notes: $d_{\mathrm{p} \ldots \mathrm{p}}$: distances between the least squares molecular planes. $d_{\mathrm{c} \ldots \mathrm{c}}$: distances between the centroids of the ring planes. ANP: angle between the ring centroid vectors and the normal to the ring plane.

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for aromatic and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: CrystalClear (Rigaku, 1999; Pflugrath, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/ MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

This work is supported by the Key Subject Program of Jiangsu Province, No. S1109001.

organic papers

Figure 2
Packing diagram, viewed down the a axis. Dashed lines indicate weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions.

References

Bernstein, J., Davey, R. J. \& Henck, J. O. (1999). Angew. Chem. Int. Ed. 38, 3440-3461.
Brett, J. T., Alexander, J. M. \& Stezowski, J. J. (2000). J. Chem. Soc. Perkin Trans 2, pp. 1095-1103.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.

Domagala, J. M., Hagen, S. E., Lunney, E. T. \& Bradly, D. (1996). WarnerLambert Co. USA, US Patent No. 5510375.
Donald, P. S. S. \& Samir, Y. F. R. (1979). US Patent No. 4147552.
Eid, A. I., Ragab, F. A., El-Ansary, S. L., El-Gazayerly, S. M. \& Mourad, F. E. (1994). Arch. Pharm. 327, 211-213.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Huang, X. L., Xu, S. P., Fu, Z. D. \& An, B. (1996). Acta Pharm. Sinica, 31, 421436.

Jacobson R. (1998). Private communication to Rigaku Corporation.
Lindsay, G., Henry, R. A. \& Hoover, J. M. (1994). US Patent No. 5286803.
Maria, M. B. \& Wang, Z. Y. (2000). Tetrahedron Lett. 41, 4025-4028.
Munshi, P., Venugopala, K. N., Jayashree, B. S. \& Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105-1107.
Nemkovich, N. A., Reis, H. \& Baumann, W. (1997). J. Lumin. 71, 255263.

Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.
Rigaku (1999). CRYSTALCLEAR. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000). CrystalStructure. Version 3.10. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sardari, S., Mori, Y., Horita, K., Micetich, R. G., Nishibe, S. \& Daneshtalab, M. (1999). Bioorg. Med. Chem. 7, 1933-1940.

Shan, D. N. \& Shan, N. M. (1954). J. Org. Chem. 19, 1681-1685.
Sharma, V. K., Saharo, P. D., Sharma, N. \& Rastogi, R. C. (2003). Spectrochim. Acta Part A, 59, 1161-1170.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vishnumurthy, K., Guru Row, T. N. \& Venkatesan, K. (2001). Observations on the Photochemical Behavior of Coumarins and Related Systems in the Crystalline State in Understanding and Manipulating Excited-State Processes, Vol. 8, edited by V. Ramamurthy \& K. S. Schanze, Molecular and Supramolecular Photochemistry, pp. 427-460. New York: Marcel Dekker Inc.

